Category Archives: The (really) Ancient Earth

Ropes, pillows and tubes; modern analogues for ancient volcanic structures

Facebooktwitterlinkedin

Analogies are the stuff of science. In geology, we frequently employ modern analogies of physical, chemical, or biological processes to help us interpret events that took place in the distant past. We cannot observe directly geological events beyond our own collective memory. Instead, we must infer what might have taken place based on evidence that is recorded in rocks, fossils, chemical compounds, and the various signals that the earth transmits (such as acoustic or electrical signals).  Analogies are not exact replicas of things or events, although they may come quite close. Their primary function is to guide us in our attempts to interpret the past.  As such, they are part of our rational discourse with deep time. Analogies are at the heart of the concept of Uniformity espoused by our 18th and 19th century geological heroes, James Hutton and Charles Lyell; they are the foundation for the common dictum “the present is the key to the past”, coined by Archibald Geikie, an early 20th century Scottish geologist.

Even though lots of people have written about this, I figure one more example that illustrates the methodology won’t hurt. Forty years ago, I worked on some very old rocks on Belcher Islands, Hudson Bay, that included volcanic deposits. Looking at the photos (35mm slides), I still marvel at the geology, the fact that something almost 2 billion years old is so well preserved, makes it look like the volcano just erupted.

Here are three ancient structures that were constructed by flowing basalt lava. Each can be compared with modern volcanic structures and processes that we can observe directly.  We can interpret the ancient structures according to the similarities and differences between the modern analogues and the ancient versions. The examples are from strata known as the Flaherty Formation, a succession of volcanic rocks exposed on Belcher Islands, Hudson Bay. Continue reading

Facebooktwitterlinkedin
Facebooktwitterlinkedin

Lahars; train-wreck geology

Facebooktwitterlinkedin

Christmas morning in New Zealand is synonymous with mid-summer barbecues at the beach, deservedly lazy times, perhaps a bit of over-indulgence. That morning, in 1953, Kiwis were expecting to awaken to news of the Royal tour; the newly crowned Queen was doing the rounds of towns and countryside, perfecting that royal wave to flag-waving folk lining the streets. Instead, they awoke to the news of a train disaster near Mt. Ruapehu, one of three active volcanoes in central North Island; a railway bridge on Whangaehu River, near Tangiwai, had been washed out on Christmas Eve.  Train carriages were strewn along the river banks, 151 people were killed.  The culprit was a geological phenomenon known as a lahar. Continue reading

Facebooktwitterlinkedin
Facebooktwitterlinkedin

The origin of life: Panspermia, meteorites, and a bit of luck

Facebooktwitterlinkedin

In the opening scenes of Stanley Kubrick’s 2001 Space Odyssey (1968), Neanderthal-like folk are scrounging for food, squabbling with a neighbouring tribe who are intent on competing for the meagre lickings (a reactionary condition that would not bode well for future humanity). One of them picks up a large bone.   There’s instant recognition, seemingly influenced by a black obelisk that appears mysteriously, that it can be used for something else. His neighbour lies in a crumpled heap. In what has become an enduring Sci-fi image, he triumphantly hurls his weapon into the air, whereupon Kubrick transforms it into an orbiting space station. Continue reading

Facebooktwitterlinkedin
Facebooktwitterlinkedin

Life on Mars; what are we searching for?

Facebooktwitterlinkedin

I believe alien life is quite common in the universe, although intelligent life is less so. Some say it has yet to appear on planet Earth. Stephen Hawking

I can only imagine H.G. Wells bitter disappointment if he were to learn that Martians were little more than primitive microbes.  All that hype and scare-mongering for nothing. Because that, it seems, is all we are ever likely to find on Mars. They may be intelligent microbes, but microbes nonetheless.

Present conditions on Mars are not conducive to thriving populations of anything living – at least in any life form we are familiar with. Incident UV and other solar radiation, low atmospheric pressure, an atmosphere almost devoid of oxygen, and the presence in soils of oxidizing molecular compounds such as perchlorates and hydrogen peroxide (think bleached hair), all contribute to rather inclement living conditions. It is possible that some life forms have survived these ravages, in sheltered enclaves or buried beneath the scorched earth, but it is more likely that, if life did exist on Mars, we will find the evidence written into ancient sedimentary rocks, or perhaps as chemical signatures.  It is these attributes that current exploration programs, both landed rover expeditions and orbiting satellites, tend to focus on. Continue reading

Facebooktwitterlinkedin
Facebooktwitterlinkedin

Sliced thin; time and process recorded in igneous rocks

Facebooktwitterlinkedin

This is the second in a series on the geological world under a microscope

Geologists, it seems, are never satisfied with just looking at rocks from a distance; there is some innate need to wield their pointy geological hammer. Break that rock; give it a good bash! To the uninitiated, this may seem a bit pugilistic, a kind of primal wonton destruction. But a good geo won’t hit rocks just for the hell-of it; a good Geo will be selective. Most of my field assistants and post-graduate candidates needed to be reminded of this. Find something of interest? Before you do anything else, sketch and photograph it; no one will be interested in looking at photos of rubble.

Looking ‘inside’ rocks serves a unique purpose; it allows you to travel back in time, to picture the ancient world, ancient events, outcomes of processes that involve the benign and the brutal, terrifyingly beautiful. Rocks contain memories of all these. And that is why we sometimes break them apart. The optical, or polarizing microscope allows us to unlock these rock memories in a uniquely visual way.  Continue reading

Facebooktwitterlinkedin
Facebooktwitterlinkedin

Ediacara; Welcome to the revolutionary world of animals

Facebooktwitterlinkedin

Mistaken Point on the Atlantic coast of Newfoundland (Canada) acquired its unfortunate reputation by fooling mariners.  In a celebration of a different kind, UNESCO, in July 2016 designated the Mistaken Point coast a World Heritage Site; it is the graveyard of exquisitely preserved animals known as the Ediacaran Fauna, and at 575 million years they are the oldest known, structurally complex, multicellular creatures.

From an evolutionary context, life forms during the previous 3 billion years were dominated by much simpler algal-bacteria like organisms that constructed mats, mounds and columns (stromatolites) and even reef-like structures, all made by single-cell prokaryotes.  The Ediacaran fauna thus represents a kind of evolutionary paradigm shift – to real animals.  As Guy Narbonne (Queens University, Ontario) has suggested, this unique fauna probably formed the “root stock” of the more recent and familiar animal kingdom, but also includes some fossils that represent failed evolutionary experiments – creatures having unique form, phylum, and genetic codes that simply didn’t go anywhere.

The complete 2016 Mistaken Point UNESCO Heritage Site dossier by Richard Thomas and Guy Narbonne can be found here, but NB, it is a large file!

What kind of animals were they?

Although discovered in Namibia, the age and evolutionary significance of the fauna were first recognised in Flinders Range strata, Australia. The name Ediacara is probably Aboriginal.  Ediacaran fossils range from 575-542 million years; the period immediately prior to what is commonly called the Cambrian Explosion. Ediacaran fossils are now found on all continents except Antarctica.

The iconic Ediacaran fossils are those that appear petal-, feather-, or sea-pen-like, creatures that in some beautifully preserved examples exhibit complex growth patterns. Guy Narbonne has described these growth patterns as “quilted fractals”, an analogy that is quite apt. They were soft-bodied animals; fossils with hard parts, shells or hard skeletal frames did not appear until the very end of the Precambrian, becoming abundant in the Cambrian.  The petal-like structures had a central stem that was attached to or grew into the sea floor; in some cases only these holdfasts are preserved. Other forms that appear frond-like grew to almost 2m in length. Some were fan-, bush-, and comb-shaped; others simple domes or discs. Imagine the ancient seafloor covered in a forest of these soft, delicate forms, swaying in the wash of gentle sea currents.  It must have been quite stunning.

Trace fossils are also present, becoming abundant in rocks younger than about 555 million years.  These are not static impressions of animals, but tracks and burrows of worm-like creatures that moved on or through soft sediment.  Many traces resemble those made by animals in much younger strata, and if the same interpretation is applied to the Ediacaran types, then they too represent animal behaviours such as feeding, or burrowing a new home.

 

Preservation – an interesting conundrum

Paleontologists frequently consider the preservation potential of the fauna and flora they study.  Animals having hard parts are more likely to be preserved than those without.  However, even skeletal remains may not survive the vagaries of scavenging or dislocation.  Complete dinosaur skeletons, although celebrated, are rare; after death the animal is prone to being eaten, crunched by powerful jaws, or dismembered by flooding rivers. Preservation of soft-bodied animals is even more fraught – they tend to decay rapidly, are eaten by scavengers, or are dismembered by ocean currents and waves.

Most Ediacaran fossils were preserved as impressions in sediment. The uniqueness of the Ediacaran fossil record is a testimony to the absence of scavengers during this geological period.  Many, like the Mistaken Point communities (and also in Mackenzie Mountains) lived in relatively deep water where currents were subdued but strong enough to ensure a continuous supply of nutrients.  That the fossils are intact means that they were buried by sediment before decay set in.

Those animal communities that lived in shallower seas (there are examples in Australia, Namibia and Russia) were periodically subjected to stronger currents and waves and had correspondingly lower preservation potential.  The buried parts of stems and fronds, and some animal burrows could be preserved (after all they were already buried), but the more delicate structures above the sea floor were easily broken up.   In some environments, such as those now found in the Flinders Range, the dead fronds or bushes were covered by a thin microbial mat that enhanced preservation.  Elsewhere (Newfoundland and England), volcanic ash falling into the sea filtered quickly through the water column, gently smothering the live animals – a bit like Pompeii.

In the grand scheme of things It is generally understood that complex, multicellular animals like the Ediacara fauna require oxygen.  For much of the preceding 3 billion years, free oxygen was in short supply. By about 1800 million years the oxygen levels are thought to have been about 10% of the concentration in our modern atmosphere (based mainly on stable isotope chemistry).  The biomass back then was dominated by single cell, prokaryotic microbes (such as cyanobacteria).  There is good evidence that simple, multicell eukaryotes were present at least 1300 million years ago, for example in forms like red algae, but they were in the minority. Sudden appearance of the Ediacaran fauna indicates that oxygen levels may have increased abruptly 600-580 million years ago, creating the right conditions for evolutionary expansion; some estimates put oxygen concentrations at about 50% present atmospheric levels.

Continued research will probably refine these numbers. Regardless, the Ediacaran fauna provides fantastic evidence of significant evolutionary trajectories and ancient environmental conditions for one of the most crucial periods in the history of our earth.

Facebooktwitterlinkedin
Facebooktwitterlinkedin

A Watery Mars; Canals, a duped radio audience, and geological excursions

Facebooktwitterlinkedin

Deceptive news is the art of pulling wool over the eyes of the populace, a tool (recently resurrected by certain politicians) for persuasion or dissuasion.  Orson Welles got more than he bargained for when, on October 30, 1938, he orchestrated a radio adaptation of H.G. Wells The War of The Worlds, a 1898 sci-fi that pits intelligent Martians against Victorian Britain.  Welles broadcast created a mix of amusement in some commentators, and in others panic and anger; panic in the unwitting, anger in the duped (especially other broadcasters), and amusement in all the above.

Well’s novel, apart from being the product of an agile mind, was influenced by some of the popular astronomical ideas of his time.  Italian astronomer Giovanni Schiaparelli produced, in 1888 a wonderfully detailed map of Mars showing (above image), among features such as seas, islands, and other landmasses, a network of ‘canali’, or channels.  Canali was misinterpreted in English as canals, and along with all its connotations of intelligent life, the idea of Martian canals entered popular belief.

Were the anthropomorphic connotations of the word canali deliberate?  Percival Lowell, a self-made American astronomer certainly thought so.  In 1894 Lowell announced his own findings, that there were indeed canals, 100s of them, many of them straight, intricately networked, and all artificial, which of course meant intelligent beings.  H.G. Wells simply expanded Lowell’s ideas to the point of delightful absurdity.  That O. Welles would later foist his version of events on an unsuspecting public seems quite reasonable.

Since the 1970s we have been projecting our own intelligence and sense of puzzlement on Mars, using satellites and landed vehicles.  There are no artificial canals, but there are canyons, channels and gullies, landforms that bear an uncanny resemblance to terrestrial analogues.  There is now a significant body of evidence to indicate that Mars was once watery.

On earth, sediment is distributed far and wide by flowing water. Very fine sediment from rivers or wind-blown dust is commonly suspended in water; the sediment gradually settles on the sea or lake floor.  Coarser sediment, like sand and gravel tends to be ‘entrained’ close to the sea floor or river bed by fast flowing water.  Sediment that is moved in this way forms a variety of structures such as ripples and larger dune-like structures.

Rivers in particular, generally move sediment to larger repositories, or basins such as seas or lakes; The kinds of landforms that represent these processes are very distinctive.  On Mars, there are several landform-indicators of flowing liquid (most likely water), most of which have direct terrestrial counterparts; deltas, straight and meandering river, point bars, alluvial fans, and gullied crater margins.  One such Martian landform, imaged by NASA’s Mars Global Surveyor, is the Eberswalde Delta which contains many of the ingredients that also make up terrestrial deltas.  In this case, sediment making up the delta was probably derived from outside the Eberswalde Crater and subsequently transported by rivers into the crater:

  • The delta consists of one or two main river channels (left side) that split into many smaller channels,
  • Bifurcating channels form distinct lobes – there are at least 6 of these, where each lobe represents a specific period of delta formation.
  • Switching of delta lobes is common in terrestrial delta. Each lobe represents a period of sediment movement and deposition, in this case into the deep crater basin.  At a certain point in time, the channel will switch direction and begin to build a new lobe.
  • Each new lobe partly overlaps older lobes, such that the younger deposits appear to lie on top of older deposits.
  • The Lena Delta in Russia provides a nice analogue for the overall shape of channels, with some active parts of the delta (especially the centre-right) juxtaposed with less active segments.

The Eberswalde Delta has another remarkable set of structures.  Meander loops (opposite image), seemingly identical to those seen in meandering rivers on Earth, contain patterns of progressive channel movement.  The Martian meander channel loop was eventually cut off, perhaps forming an oxbow lake like its terrestrial counterpart.

Martian landforms like these are mostly found in regions assigned to the Noachian Period, a geological interval that extended from 4.1 to 3.7 billion years.  All the evidence (so far) points to a time when surface water was common as rivers, lakes, and possibly seas; groundwater can be added to this mix.  If this was the case, there must also have been water vapour in the atmosphere.  The surface must have been significantly warmer than the present frigid temperatures; water vapour probably provided some degree of greenhouse protection.  Overland flow of water also produced sediment, much of which ended up in impact craters and broad lowlands.

 

However, some extremely large outflow channels, such as the Kasei Valles formed sporadically during a later, generally drier and colder time known as the Hesperian Period (3.7 to 2.9 billion years).  This massive system of channels and canyons extends about 3000km from its source in the Tharsis volcanic region, and through about 4km of topographic relief. The overall form of the channels, plus more detailed images of flow-like structures within the channels, indicates possible catastrophic outbursts of humongous volumes of water.  One popular hypothesis to account for this involves massive volumes of frozen groundwater being released either during meteorite impact or volcanic activity and heating.

The comparison between Eberswalde Delta and Kasei Valles mega-floods is quite stark; the delta represents relatively continuous river flow over a long period of time, into a crater.  The Kasei Valles outflow formed almost instantly, driven by the forces of impact and directed away from the crater.

Scientific understanding of Martian geology will continue to evolve; some hypotheses will stand the test of experimental and observational rigour; others will become history.  Modern science has developed the technology to actually do the field work, albeit remotely.  Perhaps we shouldn’t be too hasty to consign Schiaparelli’s and Lowell’s ideas to the theatrically amusing; their observations and explanations were not without context. Keep in mind the possibility that another H.G. Wells may point a satirical finger at 21st century science.

NASA, ESA and other organizations have multiple sites to access imagery and general information on all space missions.  SEPM (Society for Sedimentary Research) also has a Special Publication (number 102; 2012) with 12 papers that describe aspects of sediments and sedimentary rocks on Mars.  The Introductory chapter by John Grotzinger and Ralph Milliken provides an excellent technical summary of the Martian sedimentary realm.

 

 

 

 

Facebooktwitterlinkedin
Facebooktwitterlinkedin