Tag Archives: Ellesmere Island

Atlas of syntectonic sediments

Facebooktwitterlinkedininstagram

Syntectonic sediments – sediments associated with active tectonism

The Atlas, as are all blogs, is a publication. If you use the images, please acknowledge their source (it is the polite, and professional thing to do).

This category is a bit different to the other Atlas collections. It does not refer to a specific environmental state, like fluvial or submarine fan, but to erosion, deposition, and deformation associated with active tectonics. This includes uplift, folding, faulting, the erosion of landscapes created by each of these, and subsequent deposition. Syn-tectonic deposits may be constrained in time to specific events (e.g. faulting), or to periods of mountain building, or other modes of deformation along plate boundaries. Classic examples include the Molasse of central Europe, and basins outboard of the Cordilleran fold and thrust belt in western Canada.

Most of the images here are inferred to have been associated with specific tectonic events. Conglomerate facies are common in fluvial and alluvial settings in close proximity to active faults and uplifts (Eurekan Orogeny in the Canadian Arctic, Alberta Foreland Basin, evolving transform faults in Ridge Basin, and active extension – strike slip faulting in Death Valley), to deep marine turbidites that were also influenced by active (Waitemata) basin tectonics. There’s also a few shots of coastal exposure of an active accretionary prism on New Zealand’s east coast.

This link will take you to an explanation of the Atlas series, the ownership, use and acknowledgment of images.  There, you will also find links to the other categories.

Click on the image for an expanded view, then ‘back page’ arrow to return to the Atlas.

 

The images:

                      

Diabase sills intrude Jurassic through Permian successions in the Arctic Sverdrup Basin. Unroofing of these older rocks during the Eurekan Orogeny (climaxing about mid Eocene) provided large volumes of coarse sediment to alluvial fans, braided and high sinuosity rivers. In these two examples the Stolz Thrust is at the base of slope, with tectonic transport to the right (east). Here, the older rocks have been thrust over the syntectonic deposits (Buchanan Lake Fm.). Axel Heiberg Island.

 

                  

 

Stolz Thrust at Geodetic Hills (the site of the Middle Eocene Fossil Forest). Left: Diabase sills are thrust over syntectonic conglomerate. Right: Upturned and sheared Triassic rocks in the hanging wall; the fault trace is located in the depression (upper left).

 

Detail of shear and boudinage of Triassic sandstone-mudstone in Stolz Thrust zone, Geodetic Hills.  Location is the right image above.

 

 

 

 

Stolz Thrust, with Permo-Triassic rocks in the hanging wall (including slivers of anhydrite), over middle Eocene syntectonic conglomerate and sandstone (Buchanan Lake Fm.) North of Whitsunday Bay, Axel Heiberg Island.  Coarse-grained sediment was shed from the uplifted older rocks, and subsequently over-ridden by continued thrusting.

 

 

Intensely deformed anhydrite in the hanging wall of Stolz Thrust, Axel Heiberg Island. It is likely anhydrite debris was shed with the coarse sediment, but did not survive the first cycle of transport and deposition.

 

 

 

 

                          

Left: Syntectonic conglomerate (Buchanan Lake Fm.) over-thrust by Ordovician limestone (that also contributed debris to the conglomerate), Franklin Pierce Bay, Ellesmere Island. Right: Syntectonic conglomerate-sandstone braided river deposits that accumulated outboard of faulted uplifts. Boulder Hills, Ellesmere Island.

 

                          

Panorama of Jurassic-Triassic rocks above Stolz Thrust over syntectonic conglomerate at Geodetic Hills (Buchanan Lake Fm.), Axel Heiberg Island (left), and a compositional unroofing sequence in conglomerate (right). The lighter coloured deposits near the base of conglomerate were derived from Jurassic sandstones. the progressive change upward to darker brown conglomerate reflects access to deeper, older Triassic sandstone and diabase sills in the eroding hanging wall.

 

                               

Aerial views of Middle Eocene, syntectonic alluvial fan – braidplain conglomerate outboard of thrusted uplands. Left: Emma Fiord, Ellesmere Island. Right: Geodetic Hills, Axel Heiberg Island.

 

Small thrust fault through proximal, bouldery, syntectonic conglomerate, Geodetic Hills, Axel Heiberg Island.  Hammer lower center. Boulders to 50cm wide.

 

 

 

 

                             

Syntectonic boulder-cobble (mostly diabase) proximal alluvial fan deposits, with scattered sand wedges, Geodetic Hills, Axel Heiberg Island. At the time of deposition, they would have been close to the uplifted source rocks.

 

Thick, crudely bedded debris flows and sheet flood alluvial fan conglomerates, probably close to sediment source. Diabase clasts up to a metre wide. Middle Eocene, Geodetic Hills, Axel Heiberg Island.

 

 

 

 

Lower Paleozoic carbonates have been thrust over Upper Cretaceous foreland basin strata (approximately east-dipping bedding visible at top right), Kananaskis, Alberta Basin. The U. Cretacous units accumulated during an earlier phase of thrusting, farther west, and then subsquently over-ridden.

 

 

 

                          

Left: older foreland basin deposits (Kootenay Gp), overlain by conglomerate, shed from a renewed phase of thrusting and folding (resistant units at top) – The Lower Cretaceous Cadomin Fm. interpreted variously as braidplain, alluvial fan, and pediment. Right: Trough crossbedded, pebbly sandstone, Cadomin Fm.

 

Interbedded conglomerate-sandstone, mostly as planar tabular crossbeds. Cadomin Fm. Mt Allan, Kananaskis.

 

 

 

 

 

Lower Cretaceous foreland basin strata involved in a later phase of thrusting. View is to the north of Highwood Pass. Lewis Thrust charges down the valley beyond. Front Ranges, Alberta Foreland basin.

 

 

 

 

                          

Iconic views of the Front Ranges, Kananaskis. Left: Upturned Lower Paleozoic carbonates and sandstones, and in the valley, recessive Jurassic-Lower Cretaceous foreland basin strata. Right: Probably one of the most photographed fold pairs in Canada – Lewis Thrust terminates at the base of this fold pair. Kananaskis Highway.

 

The northern segment of Lower Miocene Waitemata Basin (Auckland) developed atop a moving slab of obducted lithosphere – the Northland Allochthon. The Allochthon, now fragmented, consists of ophiolite (including possible seamounts), marls, terrigenous clastics and limestones. Allochthon rocks, like those shown here (Algies Bay) commonly are intensely deformed. Movement of the Allochthon is implicated in some of the syn-sedimentary – weak rock deformation in Waitemata Basin itself. This view shows thrusted marls, north of Algies Bay.

                            

Examples of intense shearing in Northland Allochthon marls and mudstones. Left: multiple generations of fracturing. Right: Boudinage and shear of siderite nodules in the mudrocks (above). Algies Bay, Auckland.

 

 

Sedimentary dyke through Northland Allochthon mudrocks. The dyke contains fragments of Lower Miocene Waitemata Basin sandstone and mudstone, attesting to the dynamic relationship between the two.  The dyke in turn is fractured by later deformation. Algies Bay, Auckland.

 

 

 

                           

Examples of soft and weak-rock deformation – slumping in Waitemata Basin turbidites, possibly dynamically linked to Northland Allochthon deformation. Left: Thrust-folds near Waiwera. Right: Recumbent isoclinal folds, and rotated boudins in sandstone, Army Bay.

 

Intensely folded and faulted turbidites above an undeformed glide plane, south of Orewa Beach, possibly dynamically linked to Northland Allochthon deformation.

 

 

 

 

                          

Violin Breccia, Ridge Basin, California. fault plane talus, and or debris flows, adjacent San Gabriel Fault, a Late Miocene splay of the evolving San Andreas transform. Breccia clasts are mainly gneiss. The breccia extends many km along the fault strand, but only about 2km down-dip into the basin.

 

                             

Left: Lacustrine shoreface – delta sandstone, and stringers of Violin Breccia. Right: detail of the left image, showing crossbedded sandstone and grit-pebble sized material from the Violin Breccia. Ridge Basin, California.

 

                          

Left: down dip view of dissected Panamint Range alluvial fan, Death Valley. The coarse fan deposits reflect erosion of the uplifted Panamint metamorphic core complex.  The fan canyon-head is shown in the right image.

 

                         

Hole in the Wall, Death Valley. Here, lacustrine sands and muds contain sporadic debris flows (resistant unit). Right image shows debris flow scours. They accumulated during Miocene-Pliocene extension  that resulted in Death Valley basin subsidence. Subsequent deformation took place as the Furnace Creek strike-slip fault created an en echelon stack of fan deltas and associated lacustrine deposits.

 

                            

Hole in the Wall, Death Valley. Discordant packages of lacustrine shoreface and prodelta mudstone-sandstone, and pebble conglomerate. The debris flow in the images above can be traced from the lower right to the central part of the cliff.

 

                          

Hole in the Wall, Death Valley. Lacustrine silt and clay, in prodelta or basin floor. The right image shows small grit-filled scours from periodic influxes down the prodelta slope.

 

                          

Coastal exposure of an active accretionary prism, Waimarama, eastern North Island. The accretionary prism here consists of telescoped slivers of sea-floor sediment, above Hikurangi subduction zone.  Left: Thrusts and associated shearing in bentonitic mudrocks, sandstones, and marls (arrows), looking north. Right: Looking south at similar lithologies, and the modern expression of sedimentation associated with the deformation – a cobble beach.

 

Closer view of thrusts and intensely sheared mudstone-sandstone melange, Waimarama, eastern North Island.

 

 

 

 

 

                             

Sheared and stretched sandstone (left), and sheared bentonitic melange (right), within thin, accretionary prism thrust sheets, Waimarama, eastern North Island.

 

A lozenge of resistant cherty mudstone within the softer bentonitic melange, detached during thrusting, Waimarama, eastern North Island.

Facebooktwitterlinkedininstagram
Facebooktwitterlinkedin

Atlas of shelf deposits

Facebooktwitterlinkedininstagram

 

The Atlas, as are all blogs, is a publication. If you use the images, please acknowledge their source (it is the polite, and professional thing to do).

The term ‘shelf’ is used here loosely – it covers a range of submarine settings, mostly shallower than about 300m, from the upper slope to shoreline, the shoreface, fairweather and storm wave-base.  There is some overlap with the ‘Paralic’ category, but the context of the shallowest examples (like beach, shallow subtidal) is in their relationship to their deeper counterparts.  The separation of the ‘Shelf’ and ‘Paralic’ categories is a bit artificial, and one of convenience.

This link will take you to an explanation of the Atlas series, the ownership, use and acknowledgment of images.

Click on the image for an expanded view, then ‘back page’ arrow to return to the Atlas.

The images:

Coarsening- and bed-thickening upwards shelf (about mid shelf) to shoreface cycle, Jurassic Bowser Basin, northern British Columbia.  The coarser facies contains hummocky crossbeds (HCS) at storm wave-base, and subaqueous dune-ripples above fairweather wave-base.  There are numerous trace fossils indicative of high energy,

such as Ophiomorpha, Rosellia, and Thalassinoides.

 

Coarsening=upward cycle at about outer- to mid-shelf – some HCS at the top of the sandstone. This is a more seaward cycle to that shown above.   Jurassic Bowser Basin, northern British Columbia.

 

 

 

 

This shale to thinly bedded sandstone cycle occurs close to the shelf edge, at the transition to slope deposits.  There are a few bottom current ripples, but no HCS or larger dune structures. Jurassic Bowser Basin, northern British Columbia.

 

 

 

The chert-pebble conglomerate accumulated in a shelfbreak gully.  The uninterrupted transition from shale-dominated slope to shelf is located immediately to the right of the gully margin.  Jurassic Bowser Basin, northern British Columbia. Details of the gullies have been published here: Shelfbreak gullies; Products of sea-level lowstand and sediment failure: Examples from Bowser Basin, northern British Columbia. 1999,  Journal of Sedimentary Research 69(6):1232-1240

 

Hummock cross stratification (HCS) in a typical lower shoreface shelf cycle (storm wave-base),  Jurassic Bowser Basin, northern British Columbia. Hammer rests on a thin pebbly debris flow that immediately underlies the HCS unit.  It is generally thought that HCS forms during storms, from the combination of a unidirectional flowing bottom current, possibly as a sediment gravity flow, that is simultaneously moulded by the oscillatory motion of large storm waves.

Possible swaley bedding, formed in much the same way as HCS, but where the hummocks have been eroded leaving the concave-upward swales. Jurassic Bowser Basin, northern British Columbia.

 

 

 

 

Storm rip-ups of shelf muds in a mid-shelf cycle.  Jurassic Bowser Basin, northern British Columbia.

 

 

 

 

Many shelf cycles in the Bowser Basin succession, terminate abruptly and are overlain by a bed of fossiliferous (ammonites, trigoniids and other molluscs), pebbly, mudstone.  This marks the transition form a highstand (HST) to succeeding transgression; the mudstone is the TRansgressive Systems Tract (TST).

 

 

Transition from a sandy HST, to fossiliferous mudstone (small ammonite near the lens cap) of the TST. The top of the TST corresponds to a maximum flooding surface (MFS) – the stratigraphic record of maximum transgression.  Jurassic Bowser Basin, northern British Columbia.

 

 

The upper portion of this coarsening upward shelf cycle, the highstand systems tract, contains low-angle planar lamination and some hummocky cross-stratification (HCS). The base of the transgressive unit (TST) is an erosional surface. Jurassic Bowser Basin, northern British Columbia.

 

 

 

                          

Two views of a lenticular, trough crossbedded pebbly sandstone that has cut into the top of a shelf cycle. This has been interpreted as a lowstand fluvial channel, that traversed and eroded the shelf as it was exposed during falling sea level.  This was one mechanism for transporting gravel and sand to the slope and deeper basin, via shelfbreak gullies (like the one pictured above).  Jurassic Bowser Basin, northern British Columbia.

The same fluvial, lowstand channel shown in the images above. The channel is about 2m thick.  Jurassic Bowser Basin, northern British Columbia.

 

 

 

 

Panorama of a slope-shelfbreak gully-shelf-to fluvial transition, beautifully exposed at Mt Tsatia, Jurassic Bowser Basin, northern British Columbia. Conglomerate on the immediate right are equivalent to the rusty beds near the opposite summit. The shelfbreak is located at the top of the wedge-shaped gully (corresponds to the top of the waterfall) – below the gully are slope deposits. The thickness of strata in this view is more than a kilometre.

A really nice (folded) succession of coarsening upward shelf cycles, Eocene Eureka Sound Group, South Bay, Ellesmere Island. The Eocene shelf was laterally equivalent to river-dominated deltas (Iceberg Bay Fm.) to the north and east.

 

 

 

                         

Coarsening upward mid-shelf – shoreface cycles at South Bay, Ellesmere Island (same location as image above). Small subaqueous dunes, ripples and HCS are common.

 

                         

Coarsening upward muddy shelf cycles, mostly below storm wave-base, but the occasional cycle extending into lower shoreface (some HCS).  Eocene, Eureka Sound Group, Ellesmere Island

Downlap of muddy outer shelf siltstone and mudstone, Eocene Strand Bay Fm, Ellesmere Island

 

 

 

 

 

                        

Sandy, Paleocene shelf dunes forming part of large sandwave complexes. Most of the crossbeds are the planar, or 2D type. The right image shows detail of crossbed foresets, with some reactivation surfaces (probably tidally induced); crossbed is about 40cm thick.  There is some indication here of tidal (flood-ebb) couplets.  Expedition Fm, Eureka Sound Group, Ellesmere Island.

Sandwave complex on a Paleocene sandy shelf, made up of multiple dunes. Eureka Sound Group, Ellesmere Island.

 

 

 

 

 

                        

The abrupt, corrugated surface here is a Late Pleistocene wave-cut platform, eroded across Pliocene mudstones (Tangahoe Fm). The wave-cut platform and overlying estuarine-dune sands are part of the Rapanui Formation, near Hawera, New Zealand.  The eroded corrugations and channels contain wood, shells and pebbles.

                                           

Late Miocene – Early Pliocene coarsening upward shelf cycles, from outer-mid shelf siltstone-sandstone, to shoreface, tidally induced sandy coquina sandwaves (left image).  The 3 images show part of the highstand systems tract. The carbonate facies are part of the classic, cool-temperate water limestones of Wanganui Basin, New Zealand.  Matemateaonga Fm, Blackhill.

Thick HST calcareous sandstone – limestone, Late Miocene – Early Pliocene Matemateaonga Fm, Blackhill.

 

 

 

 

Large planar crossbeds in shelf sandwaves (HST), overlain by a pebbly shellbed deposited during the next transgressions (TST).  Late Miocene – Early Pliocene Matemateaonga Fm, Blackhill.

 

 

 

 

Typical transgressive systems tract (TST) shellbed, Late Miocene – Early Pliocene Matemateaonga Fm, Blackhill.

 

 

 

 

Detail of shelf dune foresets with backflow ripples climbing up foreset dip. Late Miocene – Early Pliocene Matemateaonga Fm, Blackhill.

 

 

 

 

Subtidal sandstone with lenticular and wavy bedding deposited during ebb-flood tides. Late Miocene – Early Pliocene Matemateaonga Fm, Blackhill.

 

 

 

 

Large planar crossbedded calcareous sandstone, formed either as shelf sandwaves or platform of a tidal inlet flood delta. Late Miocene – Early Pliocene Matemateaonga Fm, Blackhill.

Facebooktwitterlinkedininstagram
Facebooktwitterlinkedin

Polar bears do not live in the Antarctic, there are no Penguins in the Arctic. The asymmetry of the poles

Facebooktwitterlinkedininstagram

This post is about asymmetry – the Arctic and Antarctic polar regions. They are the most frigid places on Earth, but that is about all they have in common; with one other exception –  they are both stunningly beautiful. I can attest to this for the Arctic, or at least the Canadian Arctic Islands where I spent several summers; but I’ve never been to Antarctica. Visual treats everywhere. And silence – above the wind and the hum of a few insects – silence.

There is an intriguing asymmetry in their respective geographies, the timing of ice accumulation, present climates, the flora and fauna. What follows are a few comparisons and contrasts. Continue reading

Facebooktwitterlinkedininstagram
Facebooktwitterlinkedin

A 40 Million Year Old Forest, Looking Like it Formed Yesterday

Facebooktwitterlinkedininstagram

The Stunning Preservation of an Arctic Fossil Forest

Location map for Geodetic Hills, Canadian Arctic In 1985, my field assistant and I were examining sedimentary rocks on central Axel Heiberg I. in the Canadian Arctic.  The project was part of a broader science program being run by the Geological Survey of Canada. I had surmised, from some of my earlier work that the deposits here had formed in response to tectonic upheaval in the region about 40 to 45 million years ago (a geological time called the middle Eocene); we were on the look-out for additional information to assess this hypothesis.  Our helicopter had dropped us off at the base of a gentle ridge, known as Geodetic Hills. Continue reading

Facebooktwitterlinkedininstagram
Facebooktwitterlinkedin

When Time Goes Missing

Facebooktwitterlinkedininstagram

The value of missing timeA thick succession of shale, sandstone and conglomerate

Geological time that has gone missing

When you next look at sedimentary strata exposed in a hillside, cliff or road-cut, don’t just think of it as a pile of rock but as an expression of time; the length of time it took to deposit all that sediment.  The mountain exposure in the accompanying image is a great example.  Here, thousands of sedimentary layers, or strata accumulated one at a time, one upon the other.  Geologists tend to think of a succession like this as representing relatively continuous deposition of sediment, not necessarily uniform, but certainly continuous.  However, we also recognize that between each stratum there is probably some missing time that represents the amount of time taken to change from one set of environmental conditions to another.  For example, one layer may have been deposited as beach sand and the overlying layer in an estuary or tidal channel.  The length of time that is missing may be minutes, weeks, 100s or even 1000s of years that, from a geological perspective are like the blink of an eye. Continue reading

Facebooktwitterlinkedininstagram
Facebooktwitterlinkedin