Tag Archives: thin section

The mineralogy of sandstones: Quartz grains

Facebooktwitterlinkedininstagram

This post is part of the How To… series – quartz mineralogy in sandstones

 

Classification of terrigenous sandstones depends on the identification of two main components: framework grains and matrix. Frameworks are represented by a QFL triad – quartz, feldspar and lithic fragments, where the proportion of each grain type is determined from thin section.  Most classification schemes aggregate all types of quartz, feldspar and lithics into each end-member. This approach is sensible and easy to use.

But simply naming a sandstone (or any rock type for that matter) is not enough. We also want to know about its provenance, the sediment source or sources – was it a stable continent or active mountain belt, volcanic arc or ocean basin, perhaps a far-travelled terrane or tectonic sliver for which the only evidence is the collection of grains that have survived multiple cycles of attrition.

Teasing this information from the rocks requires us to delve into the mineralogy in greater detail. The simplest and cheapest way to do this is with thin sections and a polarizing microscope. We begin with the most common terrigenous component – quartz. Continue reading

Facebooktwitterlinkedininstagram
Facebooktwitterlinkedin

Sliced thin; time and process recorded in igneous rocks

Facebooktwitterlinkedininstagram

This is the second in a series on the geological world under a microscopeThin section of olivine undercrossed nicols showing a kaleidoscope of interference colours

Geologists, it seems, are never satisfied with just looking at rocks from a distance; there is some innate need to wield their pointy geological hammer. Break that rock; give it a good bash! To the uninitiated, this may seem a bit pugilistic, a kind of primal wonton destruction. But a good geo won’t hit rocks just for the hell-of it; a good Geo will be selective. Most of my field assistants and post-graduate candidates needed to be reminded of this. Find something of interest? Before you do anything else, sketch and photograph it; no one will be interested in looking at photos of rubble.

Looking ‘inside’ rocks serves a unique purpose; it allows you to travel back in time, to picture the ancient world, ancient events, outcomes of processes that involve the benign and the brutal, terrifyingly beautiful. Rocks contain memories of all these. And that is why we sometimes break them apart. The optical, or polarizing microscope allows us to unlock these rock memories in a uniquely visual way.  Continue reading

Facebooktwitterlinkedininstagram
Facebooktwitterlinkedin

Sliced thin; kaleidoscopes with a geological purpose

Facebooktwitterlinkedininstagram

This is the first post in a series on the geological world under a microscope

As a kid visiting my Scottish grandparents, I would make a bee-line for two delights in their house (after the hugs); the kitchen (following my nose) to the inevitable trays of homemade donuts and shortbread, and the living room credenza wherein was kept an old kaleidoscope. It was a triangular prism (most modern forms are tubes), filled with glitter, two mirrors at one end, and a peep-hole at the other. This simple toy introduced me to the world of symmetrical, kaleidoscopic, never-repeated patterns.  Years later, as a geology student, I was introduced to optical mineralogy, the science and art of identifying minerals under a polarizing microscope – flashbacks to my childhood. Continue reading

Facebooktwitterlinkedininstagram
Facebooktwitterlinkedin