Category Archives: Volcanism

Erupting mud volcanoes; We have ignition

Facebooktwitterlinkedininstagram

Mud
It supports geological processes.
It flows, subsides, and leads to failure, sometimes catastrophically.
It can be beneficial, forming fertile river floodplains.
It can be a pain in the neck, clogging infrastructure.
It oozes when soft; dries brick-hard
People bathe in it. Pigs love it.

And it erupts, as volcanoes.

Not the magmatic kind, with 1000oC lavas or explosive ash columns, but eruptions nonetheless. Most mud volcanoes are much smaller than their magmatic counterparts; some only a metre high, others 10s of metres. Eruptions may be the quiet, oozy kind where mud flows, slithers and slides down slope, or more violent, shooting sticky stuff 10s of metres into the air (or water); some even ignite in a cascade of fireballs. And yes, they do form on the sea floor.  One example in 2015 along the Sea of Azov coast (land-locked between Russia and Ukraine), sent mud and water several metres into the air; you can see the muddy jetsam gradually expanding across the sea surface.  Continue reading

Facebooktwitterlinkedin
Facebooktwitterlinkedininstagram

Ropes, pillows and tubes; modern analogues for ancient volcanic structures

Facebooktwitterlinkedininstagram

Analogies are the stuff of science. In geology, we frequently employ modern analogies of physical, chemical, or biological processes to help us interpret events that took place in the distant past. We cannot observe directly geological events beyond our own collective memory. Instead, we must infer what might have taken place based on evidence that is recorded in rocks, fossils, chemical compounds, and the various signals that the earth transmits (such as acoustic or electrical signals).  Analogies are not exact replicas of things or events, although they may come quite close. Their primary function is to guide us in our attempts to interpret the past.  As such, they are part of our rational discourse with deep time. Analogies are at the heart of the concept of Uniformity espoused by our 18th and 19th century geological heroes, James Hutton and Charles Lyell; they are the foundation for the common dictum “the present is the key to the past”, coined by Archibald Geikie, an early 20th century Scottish geologist.

Even though lots of people have written about this, I figure one more example that illustrates the methodology won’t hurt. Forty years ago, I worked on some very old rocks on Belcher Islands, Hudson Bay, that included volcanic deposits. Looking at the photos (35mm slides), I still marvel at the geology, the fact that something almost 2 billion years old is so well preserved, makes it look like the volcano just erupted.

Here are three ancient structures that were constructed by flowing basalt lava. Each can be compared with modern volcanic structures and processes that we can observe directly.  We can interpret the ancient structures according to the similarities and differences between the modern analogues and the ancient versions. The examples are from strata known as the Flaherty Formation, a succession of volcanic rocks exposed on Belcher Islands, Hudson Bay. Continue reading

Facebooktwitterlinkedin
Facebooktwitterlinkedininstagram

Islands with attitude; the devastation wrought by collapse of oceanic volcanoes

Facebooktwitterlinkedininstagram

Krakatoa, 1883, and the seas shivered. The eruption, one of the largest in recorded history, delivered tsunamis that swept away entire villages around Indonesia and its neighbours; little more than the flotsam and jetsam of nature’s fickleness.  Five years later, in the same general neighbourhood, nature was at it again.

Ritter Island, barely a speck on most maps, is a volcanic edifice rooted to the floor of Bismarck Sea between Papua New Guinea and New Britain. In 1888, most of the island slid beneath the waves, creating avalanches of rocky debris.  Eye-witness accounts tell of multiple tsunamis over a 3-hour period, and waves at least 8m high with run-ups to 15m above sea level.  Ritter Island is an active volcano, but at that time it was not erupting in any major way.  The island landslide is probably the largest in recent history – more than 4 cubic kilometres of volcanic rock were dislodged and redeposited along the seafloor. Slope failures like this are called volcanic sector collapses. Continue reading

Facebooktwitterlinkedin
Facebooktwitterlinkedininstagram

Lahars; train-wreck geology

Facebooktwitterlinkedininstagram

Christmas morning in New Zealand is synonymous with mid-summer barbecues at the beach, deservedly lazy times, perhaps a bit of over-indulgence. That morning, in 1953, Kiwis were expecting to awaken to news of the Royal tour; the newly crowned Queen was doing the rounds of towns and countryside, perfecting that royal wave to flag-waving folk lining the streets. Instead, they awoke to the news of a train disaster near Mt. Ruapehu, one of three active volcanoes in central North Island; a railway bridge on Whangaehu River, near Tangiwai, had been washed out on Christmas Eve.  Train carriages were strewn along the river banks, 151 people were killed.  The culprit was a geological phenomenon known as a lahar. Continue reading

Facebooktwitterlinkedin
Facebooktwitterlinkedininstagram

Overture to a cave; the spectacle of jointing in ancient basalt lava flows

Facebooktwitterlinkedininstagram

Saturday August 8, 1829, Felix Mendelssohn and his traveling companion Karl Klingemann, took a boat trip to Fingal’s Cave, the entrance to a world beneath Staffa, an inconspicuous dot on the edge of the Atlantic. Staffa is part of the Hebrides Archipelago, west Scotland. Celtic legend called it Uahm Binn, ‘The Cave of Melody’, that in story was part of a bridge extending to the iconic Giant’s Causeway in County Antrim (Northern Ireland).  The Celtic name is apt; Atlantic swells echoing countless songs.  Klingemann later wrote “Fingal’s Cave…its many pillars making it look like the inside of an immense organ, black and resounding, and absolutely without purpose, and quite alone, the wide grey sea within and without.”. Continue reading

Facebooktwitterlinkedin
Facebooktwitterlinkedininstagram

Io; Zeus’s fancy and Jupiter’s moon

Facebooktwitterlinkedininstagram

Zeus, the head-honcho of assorted Greek gods, heroes, nymphs, and mortals, was chiefly the God of the Sky, or Heavens. One of his minor portfolios was the upholding of Honour, but, as mythology relates, he didn’t put much energy into that particular task; he was a philanderer, much to the annoyance of his own wife, Hera (I guess his energies were directed elsewhere).  One such misdirection was Io, a mortal woman, who had the misfortune to be turned into a heifer by Zeus, to hide the infidelity from Hera. Io’s memory now survives as planetary body; one of the Galilean moons of Jupiter is named after her (to be named a moon of the Roman God Jupiter, seems like a historical slap in the face to the Greek deity). Continue reading

Facebooktwitterlinkedin
Facebooktwitterlinkedininstagram

Burnt soles: black sand beaches in New Zealand

Facebooktwitterlinkedininstagram

February in New Zealand is mid-summer and this means beaches, swimming, BBQs, and generally chilling (often literally).  One beach we frequent, a 50-minute drive, is Ngarunui.  It is a popular surf beach near the coastal town of Raglan on New Zealand’s west coast.  Here, the Tasman Sea rolls in, as it has done for millennia; the ancestral Tasman began to form about 80 million years ago, when the NZ subcontinent split from what then was a combined Australian – Antarctic continental block.  The ‘Ditch’, as the Tasman is often called, is about 2000km wide so there is lots of space to develop a decent wave set. Continue reading

Facebooktwitterlinkedin
Facebooktwitterlinkedininstagram