Tag Archives: non cohesive debris flow

Sedimentary structures: Mass Transport Deposits

Facebooktwitterlinkedininstagram

Facebooktwitterlinkedininstagram

soft sediment fold; deformation involving different rheological mechanisms

A look at mass transport deposits in outcrop

This is part of the How To…series  on describing sedimentary rocks – mass transport deposits in outcrop.

The images shown here illustrate some of the sedimentary facies, the soft-sediment deformation structures, and associated turbidite facies commonly encountered in MTDs.

Mass Transport Deposit, or MTD is the term given to slumps, slides and debris flows, mostly generated on relatively high angle slopes between the shelf or platform margin, and deep-water settings at the base-of-slope and beyond. The term is generally reserved for sediment packages that move and deform en masse under the influence of gravity, commonly in multiple events. Note that debris flows are included because many – most involve cohesive sediment mixes, where the mechanics of emplacement are akin to plastic flow. Turbidites (and turbidity currents) are not included because they evolve from single event turbulent suspensions of sediment (viscous fluids).  This may seem a bit arbitrary, given that some debris flows lack cohesion, develop stratification and may also represent single depositional events (a couple of examples shown below). However, it is also generally recognised that debris flows and turbidity currents represent a continuum of depositional processes.

There is a close association between MTDs and autochthonous slope deposits (mud-dominated) and turbidites in submarine fans. MTD packages commonly overlie undisturbed turbidite assemblages, and in turn are overlain or draped by them. Slump, slide and creep components of MTDs generally consist of deformed turbidites and related depositional assemblages.

MTDs develop via a range of emplacement mechanisms and mechanical processes; most sediments will be ‘soft’, unconsolidated or only mildly so, and have high interstitial fluid contents (usually seawater). Sedimentary layers may bend and fold as hydroplastics under modest strain rates, or break like brittle materials under high strain rates (faults and fractures). Liquefaction is common, where sediment becomes fluidal. All these mechanisms may occur in the same structure. The deforming sediment package may also generate sediment gravity flows such as debris flows and turbidites.

There are many excellent publications that detail MTDs; their formation, facies associations, and their significance in sedimentary basin evolution and tectonics. A few of my favourites are listed below.

More images of MTDs and related facies can be accessed in the:

Atlas of synsedimentary deformation,

Atlas of submarine fans and channels, and

Atlas of slope, shelf-break gullies, and submarine canyons.

 

Related links in this series on outcrops

Sedimentary structures: Alluvial fans

Sedimentary structures: coarse-grained fluvial

Sedimentary structures: Fine-grained fluvial

Sedimentary structures: Turbidites

Sedimentary structures: Shallow marine

Sedimentary structures: Stromatolites

Volcanics in outcrop: Lava flows

Volcanics in outcrop: Secondary volcaniclastics

Volcanics in outcrop: Pyroclastic fall deposits

 

Other useful links

Sediment transport: Bedload and suspension load

The hydraulics of sedimentation: Flow regime

Fluid flow: Froude and Reynolds numbers

Sedimentary structures: Shallow marine

Liquefaction: More than a sloppy puddle at the beach

Describing sedimentary rocks; some basics

Measuring a stratigraphic section

 

The first two diagrams show some basic sediment descriptors and terminology, and a typical stratigraphic column drawn from outcrop data. The third graph shows the basic Stress-Strain Rate rheology for different flow types. These are your starting points for describing and interpreting sedimentary rocks and sedimentary structures in outcrop, hand specimen, and core.

A list of basic sedimentary rock descriptions

 

Drawing a stratigraphic column, based on thickness, grain size, lithology, and sedimentary structures

Stress-strain (deformation) relationships for sedimentary flows and soft-sediment deformation

 

The outcrop images

 

MTD and synsedimentary faults, Waitemata Basin

 

 

Isoclinal fold, thrust, and boundinage, Waitemata Basin

 

 

Slump folded sandstone exhibiting different mechanical behaviours

 

 

MTD Ridge Basin, synsedimentary faults, fold thickening

 

 

Pebbly mudstone, Cretaceous Pigeon Pt. Fm.

 

 

 

Multiple debris flows and surges, Pigeon Pt. Fm. California

 

 

Stratified, non cohesive debris flow, Bowser Basin, northern British Columbia

See also A submarine channel complex

 

References

P.R. King, B.R. Ilg, M. Arnott, G.H. Browne, L.J. Strachan, M. Crundwell, and K. Helle. 2011. Outcrop and seismic examples of mass transport deposits from a Late Miocene deep-water succession, Taranaki Basin, New Zealand. In R.C. Shipp, P Weimer, and H.W. Posamentier Eds.), Mass-Transport Deposits in Deepwater Settings.  SEPM Special Publication Volume 96. Fantastic coastal exposures of MTDs, along the North Taranaki coast.

T. Mulder, and J. Alexander; 2001,The physical character of subaqueous sedimentary density flows and their deposits”; Sedimentology: 48, 269-299

H.W. Posamentier and O.J. Martinsen. 2011. The character and genesis of submarine Mass Transport Deposits: Insights from outcrop and 3D seismic data. In R.C. Shipp, P Weimer, and H.W. Posamentier Eds.), Mass-Transport Deposits in Deepwater Settings.  SEPM Special Publication Volume 96.

R.C. Shipp, P Weimer, and H.W. Posamentier Eds.), 2011. Mass-Transport Deposits in Deepwater Settings.  SEPM Special Publication Volume 96 Most of the papers in this volume are free access.

D. Stow and Z. Smillie, 2020 Distinguishing between deep-water sediment facies: Turbidites, Contourites, and Hemipelites. Geosciences, v. 10,. Open Access.

Facebooktwitterlinkedin
Facebooktwitterlinkedininstagram

Facebooktwitterlinkedininstagram
Facebooktwitterlinkedin

Atlas of fan deltas

Facebooktwitterlinkedininstagram

 

Fan deltas at several locations along Tanquary Fiord, Ellesmere Island

Fan deltas, their deposits and structural associations

The Atlas, as are all blogs, is a publication. If you use the images, please acknowledge their source (it is the polite, and professional thing to do).  I

Fan deltas are like alluvial fans except they dip their toes in lakes and shallow seas. So, in addition to the alluvial component, there is subaqueous deposition down a relatively steep, angle-of-repose slope. Sedimentation along the delta front, or slope, commonly produces large, basinward-dipping foresets, one of the defining characteristics of fan deltas.

Fan delta deposits are generally coarse-grained; there is much sand and gravel. Distributary systems tend to be braided. Sediment is supplied to the delta front from where it avalanches down-slope or transforms to debris flows. Gravitational instability may also influence depositional mechanisms.

Fan deltas tend to accumulate where there is a decent supply of sediment; close to steep uplands, active faults, mountain fronts, thrust fronts, glacial lakes and fiords, and pull-apart basins.    Deposition outboard of active extension faults can produce spectacular fan delta stacks on the hanging-wall block. Fan deltas associated with thrust faults may accumulate as basinward overlapping packages in the footwall, that are subsequently overthrust. In pull-apart basins, the locus of fan delta stacking parallels strike-slip displacement; often likened to a horizontal stack of dominoes – the Devonian Hornelen Basin (Norway) and Late Miocene Ridge Basin (California) are classic examples.

Here’s a paper on Bowser Basin fan deltas: Ricketts, B.D., and Evenchick, C.A. 2007. Evidence of different contractional styles along foredeep margins provided by Gilbert deltas; examples from Bowser Basin, British Columbia, Canada: Bulletin of the Canadian Petroleum Geologists, v. 55, p. 243-261.

This link will take you to an explanation of the Atlas series, the ownership, use and acknowledgment of images.  There, you will also find links to the other categories.

Click on the image for an expanded view, then ‘back page’ arrow to return to the Atlas.

 

The images:

A sizeable fan delta encroaching into Tanquary Fiord, Ellesmere Island. Arrow points to a Geological Survey of Canada base camp in 1988. The gravel delta top and foreslope are derived from Paleozoic rocks.

 

 

 

The head of Strand Fiord, Axel Heiberg Island, contains a braid-plain fan delta (center), the outwash drainage from Strand Glacier (distant right). A smaller, ‘radial’ fan delta is growing along the south (right) fiord shore.  See image below for a different perspective of this fan delta.

 

 

Looking west along Strand Fiord (Axel Heiberg Island); several small fan deltas drain the bordering ridges. In the foreground is the fan delta shown in the preceding image, fed by a braided river.

 

 

 

 

                     

Typical Arctic fan deltas: Left Slidre Fiord. Braided stream supply to the delta front is clear, with the active channels regularly moving across the delta top. A gravel beach ridge formed along the inactive delta front, has become detached.  Right: Small, steep sloped fan delta along Emma Fiord.

 

                          

This small, very recent, dissected fan delta accumulated on the beach face at Kariotahi, south Auckland (Tasman Sea coast). Storm drainage through the weakly indurated Pleistocene dune-beach sands behind, deposited sand during high tide. The small delta built across the beach, and as the tide ebbed, the stream eroded into its delta. The overall concave (down) top surface is evident in both images.

Cross-section through the Kariotahi mini fan delta. Mostly Laminated and rippled sand and a few mud stringers, with a layer of disrupted sand-mud at the red arrow.

 

 

 

 

Pleistocene Gilbert delta exposed in the Bradner Road pit, Fraser Valler, Vancouver. The dipping foresets have a clear topset sand unit (laminated and small crossbeds).  Foresets show numerous pinchouts and local discordances, probably reflecting changing stream flow and sediment supply, and possibly local slumping down the foreslope. The delta is at least 6m thick.  It accumulated in a glacial outwash lake. The overlying grey deposit is a diamictite.

 

An impressive stack of Upper Jurassic fan deltas in Bowser Basin, northern British Columbia. Each delta package is separated by recessive, interfan turbidites and mudstone. The stack accumulated during active faulting close to the basin margin. Icebox Canyon.

 

 

 

A different perspective of the Icebox Canyon fan delta stack: fan foresets are dipping towards the viewer (top to the left). Some fan packages coalesce, others are separated by thin turbiditic sandstone and mudstone.

 

 

 

Closer view of delta packages, shows foresets, and thin bedded interfan deposits. Icebox Canyon, Bowser Basin

 

 

 

Foreset geometry is clearly expressed in this view of the Icebox Canyon fan delta stack

 

 

 

 

Interfan turbidites, mostly Tb-d components of Bouma cycles. Top to the right.

 

 

 

 

Gravel ripples developed along some fan delta foresets, indicating some down-slope bedload movement of sand and gravel. Icebox Canyon, Bowser Basin.

 

 

 

 

                         

Clear discordances between foreset conglomerate beds, and topset conglomerates in fan deltas at Mt. Cartmel (left), and Tsargoss Lake (right). Topset beds at Mt. Cartmel contain planar and trough crossbedded, clast-supported conglomerate that is interpreted as the briaded, alluvial portion of the fan delta. Bowser Basin.

Some fan Deltas in Bowser Basin, migrated to the shelf-slope break, and were probably instrumental in supplying gravel to the deeper basin submarine gullies, canyons, and submarine fans. Here, foreset toes interfinger with slope shale and thin sandstone. West of Tsatia Mt.

 

 

Admittedly a bit dark, but look closely and you will see fan delta foreset toes interfingering with slope mudrocks, and overlying the delta, coarsening-upward shelf deposits. West of Tsatia Mt, Bowser Basin.

 

 

 

                                 

Non-cohesive – greater degree of clast-support (left) and cohesive-muddy (right) debris flow conglomerate composing some fan delta foresets at the Mt Cartmel delta.

Reconstruction of fan delta-shelf and shelf-break gullies, outboard of active Late Jurassic thrusting, Bowser Basin, BC.  For details, see: Ricketts, B.D., and Evenchick, C.A. 2007. Evidence of different contractional styles along foredeep margins provided by Gilbert deltas; examples from Bowser Basin, British Columbia, Canada: Bulletin of the Canadian Petroleum Geologists, v. 55, p. 243-261.

Facebooktwitterlinkedininstagram
Facebooktwitterlinkedin